« Synthèse des prospectives 2019 » : différence entre les versions

De axe-methodes-formelles
Aller à la navigation Aller à la recherche
Aucun résumé des modifications
Aucun résumé des modifications
Ligne 10 : Ligne 10 :
* Need to recreate systems and infrastructures that require less energy, resources, maintainance, etc.
* Need to recreate systems and infrastructures that require less energy, resources, maintainance, etc.


=== Confidentialité ===
=== Confidentiality ===


=== Sûreté des systèmes (logiciels, matériels, et cyperphysiques) ===
=== System safety (software, hardware and cyber-physical) ===




== Problématiques ==
== Problems to solve ==


=== Construction certifiée de systèmes ===
=== Certified construction of systems ===


=== Correction d'erreurs ===
=== Error correction ===


=== Explicabilité et accountability des systèmes embarqués et cyber-physiques ===
=== Explainability and accountability of embarked and cyber-physical systems ===


The increasing complexity and autonomy of CPS have made accountability and explainability requirements more crucial: in order to be socially acceptable, the behaviors of CPS must be explainable. This is particularly the case for systems in which decision making is based on AI, but it is not limited to this case. Along with safety, the respect - and violation - of properties such as security and privacy must be explainable. This explainability should in particular be used to understand were the blame lies from a legal point of view when a CPS malfunctions.
Avec la complexité et l'autonomie croissantes des CPS les besoins d'accountability et d'explicabilité deviennent cruciaux : pour être socialement acceptables les comportements des CPS doivent être explicables. Ce besoin touche particulièrement les systèmes dont la prise de décisions est basée sur l'intelligence artificielle, mais il n'est pas limité à l'IA. Outre la sûreté, le respect - et la violation - de propriétés comme la sécurité et la vie privée doivent être rendus explicables. Cette explicabilité doit servir, en particulier, à départager les responsabilités juridiques entre acteurs en cas de dysfonctionnements des CPS.




== Thèmes de recherche ==
== Research themes ==




=== Concepts, langages et outils pour la modélisation et vérification de systèmes complexes ===
=== Concepts, languages and tools for modelling and verifying complex systems ===


* Graph rewriting
* réécriture de graphes
* Automated reasoning
* raisonnement automatisé, etc.


=== Embedded IA ===
=== Embedded IA ===


"Embedded IA" et plus specifiquement "embedded machine learning". On voit ainsi emerger des implementations FPGA et ASIC pour faire du ML et des CNN (convolutional neural networks), ainsi que du deploiement sur des multi-coeurs.
"Embedded IA" and more specifically "embedded machine learning". There are now FPGA and ASIC implementations for ML and CNN (convolutional neural networks), as well as multicore deployments.


=== Proof formalisation in applied mathematics and theoretical computer science ===
=== Formalisation de preuve en mathématiques appliquées et en informatique théorique ===


e.g.:
E.g.:
* Development of libraries of certified definitions
* développement de corpus certifiés de définitions
* Theorems and algorithms for financial mathematics, logic, etc.
* théorèmes et algorithmes pour les mathématiques financières, la logique, etc.


=== Informatique quantique ===
=== Quantum information science ===


=== Langages de haut niveau typés pour la science des données ===
=== Typed high-level languages for data science ===


The preparation of data (clean-up, requests, distributed handling, etc.) is of paramount importance in the construction of AI applications. Construction of type systems for the analysis and handling of data. Construction of analysis methods and optimized compilation for these languages; in particular for requests.
Importance prépondérante de la préparation des données (nettoyage,
requêtage, manipulation distribuée des données, etc.) dans la
construction d'applications en intelligence artificielle. Construction de systèmes de types pour l'analyse de la manipulation de données. Construction de méthodes d'analyse et de compilation optimisante pour ces langages et en particulier pour le requêtage.

Version du 11 février 2019 à 10:10

Societal challenges

Adapting digital technology to the ecological transition

Digital technology needs to be adapted to the major challenge that is the ecological transition:

  • Methods to better understand the environmental and societal impact of digital technology
  • More important need for resiliency
  • Need to recreate systems and infrastructures that require less energy, resources, maintainance, etc.

Confidentiality

System safety (software, hardware and cyber-physical)

Problems to solve

Certified construction of systems

Error correction

Explainability and accountability of embarked and cyber-physical systems

The increasing complexity and autonomy of CPS have made accountability and explainability requirements more crucial: in order to be socially acceptable, the behaviors of CPS must be explainable. This is particularly the case for systems in which decision making is based on AI, but it is not limited to this case. Along with safety, the respect - and violation - of properties such as security and privacy must be explainable. This explainability should in particular be used to understand were the blame lies from a legal point of view when a CPS malfunctions.


Research themes

Concepts, languages and tools for modelling and verifying complex systems

  • Graph rewriting
  • Automated reasoning

Embedded IA

"Embedded IA" and more specifically "embedded machine learning". There are now FPGA and ASIC implementations for ML and CNN (convolutional neural networks), as well as multicore deployments.

Proof formalisation in applied mathematics and theoretical computer science

E.g.:

  • Development of libraries of certified definitions
  • Theorems and algorithms for financial mathematics, logic, etc.

Quantum information science

Typed high-level languages for data science

The preparation of data (clean-up, requests, distributed handling, etc.) is of paramount importance in the construction of AI applications. Construction of type systems for the analysis and handling of data. Construction of analysis methods and optimized compilation for these languages; in particular for requests.